Strona Główna | Kontakt       
ZASTOSOWANIE   •   ŻYWICE POLIESTROWE   •   ŻYWICE EPOKSYDOWE   •   ŻELKOTY I TOPKOTY   •   ZBROJENIA I PRZEKŁADKI   •   ABC LAMINIOWANIA
zbrojenia

Wprowadzenie
-------------------------------
Maty szklane
-------------------------------
Tkaniny szklane
-------------------------------
Kevlar
-------------------------------
Włókno węglowe



Pianki







REKLAMA
terminal platniczy dla vendingu











Strona główna > Zbrojenia i materiały przekładkowe > Włókno węglowe

Włókno węglowe

Carbon fibers or carbon fibres (alternatively CF, graphite fiber or graphite fibre) are fibers about 5–10 micrometres in diameter and composed mostly of carbon atoms.To produce a carbon fiber, the carbon atoms are bonded together in crystals that are more or less aligned parallel to the long axis of the fiber as the crystal alignment gives the fiber high strength-to-volume ratio (making it strong for its size). Several thousand carbon fibers are bundled together to form a tow, which may be used by itself or woven into a fabric.

The properties of carbon fibers, such as high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion, make them very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports. However, they are relatively expensive when compared with similar fibers, such as glass fibers or plastic fibers.

Zastosowanie elementów z kompozytów epoksydowo-węglowych pozwala na budowanie bardziej wytrzymałych i lekkich konstrukcji. W przypadku mało skomplikowanych i nie przenoszących obciążeń elementów (takich jak klapy, pokrywy) można przyjąć, że masa części wykonanej z żywicy i tkaniny węglowej jest 4-krotnie mniejsza niż elementu ze stali.

Kliknij aby zobaczyć większe zdjęcia:

Carbon fibers are usually combined with other materials to form a composite. When combined with a plastic resin and wound or molded it forms carbon-fiber-reinforced polymer (often referred to as carbon fiber) which has a very high strength-to-weight ratio, and is extremely rigid although somewhat brittle. However, carbon fibers are also composited with other materials, such as with graphite to form carbon-carbon composites, which have a very high heat tolerance.

http://energy.gov/articles/top-9-things-you-didn-t-know-about-carbon-fiber

http://www.alibaba.com/product-detail/Offer-For-Sale-3K-200G-Twill_60004057520.html?spm=a2700.7724857.29.1.6skEeK&s=p

http://www.alibaba.com/product-detail/3k-200g-twill-carbon-fiber-weave_60022616053.html?spm=a2700.7724857.29.10.6skEeK&s=p

http://fitwerx.com/carbon-fiber-quality-part-2-of-a-3-part-series-on-carbon-fiber-in-the-bike-industry/


http://www.dexcraft.pl/blog/technologia-kompozytow/carbon-czyli-wlokno-weglowe-9-tajemnic-tego-materialu/

http://allegro.pl/tkanina-wlokno-weglowe-3k-200g-m2-1m2-i5903007056.html

http://allegro.pl/wlokno-weglowe-tkanina-weglowa-karbon-200g-plain-i5909470746.html

http://allegro.pl/wlokno-weglowe-tkanina-weglowa-karbon-200g-twill-i5909450357.html

http://www.alibaba.com/product-detail/12k-Unidirectional-300g-Carbon-Fiber-Cloth_60063120908.html?s=p

http://www.alibaba.com/product-detail/BD-Carbon-Fiber-Fabric-Twill-and_516215779.html?s=p

Carbon

9. Carbon fiber -- sometimes known as graphite fiber -- is a strong, stiff, lightweight material that has the potential to replace steel and is popularly used in specialized, high-performance products like aircrafts, racecars and sporting equipment.

8. Carbon fiber was first invented near Cleveland, Ohio, in 1958. It wasn’t until a new manufacturing process was developed at a British research center in 1963 that carbon fiber’s strength potential was realized.

7. Current methods for manufacturing carbon fiber tend to be slow and energy intensive, making it costly for use in mass-produced applications. With a goal of reducing carbon fiber production costs by 50 percent, the Energy Department’s new Carbon Fiber Technology Facility at Oak Ridge National Laboratory is working with manufacturers and researchers to develop better and cheaper processes for producing carbon fibers. Lowering the cost of carbon fibers make it a viable solution for vehicles and a wide variety of clean energy applications.

6. The 42,000-square foot facility features a 390-foot-long processing line that is capable of producing up to 25 tons of carbon fiber a year -- that is enough carbon fiber to cover the length of almost 138,889 football fields.

5. The most common carbon fiber precursor -- the raw material used to make carbon fibers -- is polyacrylonitrile (or PAN), accounting for more than 90 percent of all carbon fiber production. Other precursors options include a common plastic and a wood byproduct.

4. As part of conventional carbon fiber production, precursors go through several processes that include stretching, oxidation (to raise the melting temperature) and carbonization in high-temperature furnaces that vaporize about 50 percent of the material, making it nearly 100 percent carbon.

3. Carbon fiber can be woven into a fabric that is suitable for use in defense applications or added to a resin and molded into preformed pieces, such as vehicle components or wind turbine blades.

2. The next generation of carbon-fiber composites could reduce passenger car weight by 50 percent and improve fuel efficiency by about 35 percent without compromising performance or safety -- an advancement that would save more than $5,000 in fuel over the life of the car at today’s gasoline prices.

1. In addition to its uses in manufacturing of cars and trucks, advances in carbon fiber will help American manufacturers lower the cost and improve the performance of wind turbine blades and towers, electronics, energy storage components and power transmission lines.

Last a Foam

Current methods for manufacturing carbon fiber tend to be slow and energy intensive, making it costly for use in mass-produced applications. With a goal of reducing carbon fiber production costs by 50 percent, the Energy Department’s new Carbon Fiber Technology Facility at Oak Ridge National Laboratory is working with manufacturers and researchers to develop better and cheaper processes for producing carbon fibers. Lowering the cost of carbon fibers make it a viable solution for vehicles and a wide variety of clean energy applications.
Kliknij aby zobaczyć większe zdjęcia:






nayax ZASTOSOWANIE ŻYWIC
Budowa auta wg własnego projektu
Żywice poliestrowe i technologia laminowania ręcznego pozwalają na stosunkowo tanie budowanie konstrukcji jednostkowych


CZYTAJ DALEJ
---------------------------------------

ZASTOSOWANIE ŻYWIC
Cirrus SR20
Mały i lekki samolot zbudowany głównie z kompozytów


CZYTAJ DALEJ
---------------------------------------

ABC LAMINOWANIA
Budowa modelu (kopyta)
Stworzenie gotowego wyrobu z laminatów najczęściej poprzedzone jest zbudowaniem modelu będącego dokładnym odzwierciedleniem wyjściowego produktu


CZYTAJ DALEJ
---------------------------------------

ZBROJENIA I PRZEKŁADKI
Maty szklane
Maty szklane wykonywane z pociętych, nieuporządkowanych włókien szklanych sa podstawowym zbrojeniem w produkcji laminatów


CZYTAJ DALEJ




- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Home | Żywice poliestrowe | Żywice epoksydowe | Żelkoty i topkoty | Zbrojenia i materiały przekładkowe | ABC laminowania | Kontakt
© Copyright Portal Żywice.com